Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 18, 2026
-
Abstract. Linear elastic fracture mechanics (LEFM) models have been used to estimate crevasse depths in glaciers and to represent iceberg calving in ice sheet models. However, existing LEFM models assume glacier ice to be homogeneous and utilize the mechanical properties of fully consolidated ice. Using depth-invariant properties is not realistic as the process of compaction from unconsolidated snow to firn to glacial ice is dependent on several environmental factors, typically leading to a lower density and Young's modulus in upper surface strata. New analytical solutions for longitudinal-stress profiles are derived using depth-varying properties based on borehole data from the Ronne Ice Shelf and are used in an LEFM model to determine the maximum penetration depths of an isolated crevasse in grounded glaciers and floating ice shelves. These maximum crevasse depths are compared to those obtained for homogeneous glacial ice, showing the importance of including the effect of the upper unconsolidated firn layers on crevasse propagation. The largest reductions in the penetration depth ratio were observed for shallow grounded glaciers, with variations in Young's modulus being more influential than firn density (maximum differences in crevasse depth of 46 % and 20 %, respectively), whereas firn density changes resulted in an increase in penetration depth for thinner floating ice shelves (95 %–188 % difference in crevasse depth between constant and depth-varying properties). Thus, our study shows that the firn layer can increase the vulnerability of ice shelves to fracture and calving, highlighting the importance of considering depth-dependent firn layer material properties in LEFM models for estimating crevasse penetration depths and predicting rift propagation.more » « less
-
Abstract. Full-thickness crevasses can transport water from the glacier surface to the bedrock where high water pressures can open kilometre-long cracks along the basal interface, which can accelerate glacier flow. We present a first computational modelling study that describes time-dependent fracture propagation in an idealised glacier causing rapid supraglacial lake drainage. A novel two-scale numerical method is developed to capture the elastic and viscoelastic deformations of ice along with crevasse propagation. The fluid-conserving thermo–hydro–mechanical model incorporates turbulent fluid flow and accounts for melting and refreezing in fractures. Applying this model to observational data from a 2008 rapid-lake-drainage event indicates that viscous deformation exerts a much stronger control on hydrofracture propagation compared to thermal effects. This finding contradicts the conventional assumption that elastic deformation is adequate to describe fracture propagation in glaciers over short timescales (minutes to several hours) and instead demonstrates that viscous deformation must be considered to reproduce observations of lake drainage rates and local ice surface elevation changes. As supraglacial lakes continue expanding inland and as Greenland Ice Sheet temperatures become warmer than −8 °C, our results suggest rapid lake drainage events are likely to occur without refreezing, which has implications for the rate of sea level rise.more » « less
An official website of the United States government
